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S U M M A R Y  
Recent group theoretic techniques effective for reducing the number of variables in systems of partial differential 
equations are invoked to formulate a generalized approach to dimensional analysis. It is then shown that significant 
conclusions can be elicited upon consideration of a dimensional matrix arising via the group formulation. In particular, 
a generalized form of Sedov's self-similarity criterion is shown to exist within the framework of the approach developed. 
The presentation is concluded by consideration of three illustrations. 

1. Preliminaries 

One of the first systematic applications of group theory to the dimensional-similarity analyses 
of problems arising in fluid mechanics and related engineering specialities is found in Birkhoffs 
classic, Hydrodynamics [1]. The author remarks in this volume, "...I believe.., we have only 
begun to explore the applications of the group concept to differential equations." The correct- 
ness of this observation is amply attested by the numerous contributions made in this area 
during the past two decades : [2], [3], [43, [5], and still others might be mentioned. 

A central feature of dimensional-similarity analyses via group theory is the use of a group 
of continuous r-parameter transformations, 

5i=fi(zl ,  z 2 . . . . .  z,; A1, A2, .. . ,At) (i=1 ..... n) (1.1) 

and the absolute invariants associated with the group: functions rc which satisfy, re(z1, z 2 .....  
z,) = rc(~l, ~2, ..., ~,); (see [6] for an excellent introduction to the theory of continuous trans- 
formation groups). The A's of (1.1) are the group parameters, of which more is said later. The 

variables z~ of (1.1) correspond to be variables appearing in the set of governing equations 
under consideration--i.e., correspond to the variables of a set of differential equations and its 
associated set of boundary and/or initial conditions. 

The first step in the application of the group theoretic approach to dimensional-similarity 
analyses is the establishment of a group under whose transformations the set of governing 
equations is invariant inform. Next, the absolute invariants of the group are used to express the 
governing equations in terms of fewer variables, this being the objective of many dimensional- 
similarity analyses. 

The establishment of an appropriate group is frequently the crucial step. Considerable effort 
has been directed, therefore, to the problem of devising means for establishing a group under 
whose transformations a given set of governing equations is invariant in form. An extremely 
powerful approach to this problem would clearly be a method by which an investigator could 
begin an analysis by considering the class of groups (1.1), and then seek in a systematic manner 
restrictions imposed upon the functionsf~ by a given set of governing equations in order that the 
equations be invariant in form. Certain investigators have proposed systefnatic methods aimed 

* This research has been sponsored in part by the Mathematics Research Center, United States Army, The University 
of Wisconsin, under contract  No. DA-31-124-AR0-D-462. The paper is based upon a presentation made at the Six- 
teenth Conference of Army Mathematicians, Bethesda, Maryland, May, 1970. 
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at this objective, [4], [51, [71 ; but while effective, the methods often achieve generality at the 
expense of considerable manipulation. 

Experience reveals that for a wide range of engineering applications a sufficiently general 
class of groups to initiate an analysis is provided by the subclass of r-parameter groups (1.1) 
with the form, 

~,= C,(A,, ..., A,)zi+Di(A , . . . . .  A,) (i= 1 ... . .  n) (1.2) 

see [8], [9]. The initial objective of such analyses is to establish restrictions imposed upon the 
functions C~, D~ by a given set of governing equations in order that the set be invariant in form. 
The advantage of initiating an analysis with a class of groups (1.2) is that a significant reduction 
in manipulation is often realized over that required by the above-mentioned systematic 
methods ; but while there may be less manipulation, the approach may in some cases lead to less 
general results than would be derived via the more inclusive class (1.1). 

Another, still more special subclass of (1.1) which has been found to have utility in a number 
of dimensional-similarity analyses is one of the form, 

~, = A]" .... A~ ir z, (i= 1,...,  n). (1.3) 

Many of the manipulative difficulties inherent in the foregoing approaches are eliminated by 
initiating an analysis with a class of groups with the form (1.3) : With (1.3) the initial objective is 
merely to establish restrictions imposed upon the exponents ~,  (c~ = 1, ..., r) by a given set of 
governing equations in order that the set be invariant in form. The expense of this manipulative 
ease, however, may well be a loss of some generality. This point notwithstanding, the focus of the 
present paper is upon the utility of r-parameter groups (1.3) for dimensional-similarity analyses: 
Of special interest are the conclusions that may be established merely by considering the 
associated matrix of exponents, 

~ : [ 7 ,  . . . .  ,~i~]. 

Following Bridgman [10], it is helpful to introduce, 

Definition 1 : Relative to the group (1.3), the dimensions of the variable denoted by zi are 9iven by 
the r-tuple (Vii, ..., 7i,). 

The matrix 7 associated with a group (1.3) will be termed, therefore, a dimensional matrix. 

2. Generalized Dimensional Analysis 

Groups with the form (1.3) bear a close relationship to traditional approaches to dimensional 
analysis; e.g., see [1]. As a concrete example, consider a flat plate which is immersed in an 
incompressible, viscous fluid, and which is accelerated from rest to a constant plate velocity 
U > 0; mathematically [11], 

ut-vuy~=O (momentum) (2.1) 

subject to, 
u--,O as t--,O when y>O 
u--+0 as y--+o~ when t>0  (2.2) 
u--,U as y--.0 when t>0  

where u denotes the fluid velocity parallel to the plate; v (v > 0) symbolizes the constant kine- 
matic viscosity of the fluid ; y represents position normal to the plate, and t signifies time. 
Finally, letter subscripts denote partial differentiation. 

The conventional dimensional approach to this problem would be to associate dimensional 
formulae with each of the significant quantities, [10], [111. Thus, 

[u], [U]: L+IT -1, [Y]: L+l"f~ It]: L~ +1, Iv][ L+2"c -1 , (2.3) 

wherein the brackets [ ] mean "the dimensions of." The formulae (2.3) may be regarded as 
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shorthand expressions for the scale change equations, 

~t=L+lz-au, y=L+lz~ T=L~ f~-=L+2z-lv, U=L+a'c- IU,  (2.4) 

e.g., see [13], [14]. Equation (2.4) has a greater significance, however, than merely for changing 
scale; that is, (2.4) constitutes a two-parameter group, with the scale factors L and z playing the 
role of group parameters. [-The relationship of (2.4) with (1.3) is perhaps most readily seen by 
rewriting (2.4) with A a - L ,  A 2 ~ ' c . ]  

Having indicated the relationship of r-parameter groups (1.3) to conventional dimensional 
notions, attention is now briefly focused upon a central feature of this paper; namely, each of 
the variables in any set of governing equations under consideration is regarded as being in one 
of three distinct categories; (i) dependent, (ii) independent, (iii) physical. Thus, as an elementary 
illustration, the variables appearing in (2.1)-(2.2), u, y, t, v, U, may be identified as follows. The 
fluid velocity u may be identified as the dependent variable ; the position and time coordinates 
x, t may be identified as independent variables; and the quantities U, v may be identified as 
physical variables. The principal results of this paper have application, therefore, to those 
sets of governing equations for which it is possible to unambiguously divide the variables 
appearing therein into the above-mentioned categories. 

In recognition of the foregoing three categories for variables, the class of r-parameter groups 
(1.3) can be written somewhat more explicitly. Thus, to be considered in the following discus- 
sions are r-parameter groups with the form, 

Zj = A"~'... A"/"Zj (j= 1 . . . . .  n > 1) (2.5) 

X k = A  b~l ...AOkr X~ (k= l ,  ..., m >  1) (2.6) 
! 

_ _  C e l  Cer  � 9  I. Y e - A 1  . . .At Ye ( e= l ,  . , p > 0 )  (2.7) 

wherein the Z's are to be associated with the dependent variables of a set of governing equations, 
the X's are associated with the independent variables, and the Y's are associated with the 
physical variables. [As a concrete example, (2.5) corresponds to the first transformation of 
(2.4), (2.6) corresponds to the second pair of transformations appearing in (2.4), and (2.7) 
corresponds to the last pair of transformations in (2.4)]. 

Subsequent discussions reveal that the dimensional matrix associated with (2.5)-(2.7) plays 
an important  role. To facilitate the presentation, then, let B denote the (m x r) matrix [bkl . . . . .  
bk,] ; and let C denote the (p x r) matrix [ce~ . . . . .  Cer]- Similarly, let BC denote the ( [m+p]  x r) 
matrix, 

BC : [ bkl' "'" bkr] 
Cel, ., Cer_] 

The matrix BC is assumed to have rank r*, while the matrix C has rank s, s < r. Thus, the di- 
mensional matrix associated with (2.5)-(2.7) has rank r. 

As an additional means of facilitating the presentation, the rows of BC are assumed to be 
arranged so that, 

(i) When s = r, the first r rows of C are linearly independent; 
(ii) when s < r, the first s rows of C plus the last J r - s ]  rows of B are linearly independent. 
To illustrate the foregoing notions, consider again (2.4). By inspection, the matrices B, C and 

BC are given, respectively by, 

Also, for (2.4), n = 1, m = p = r = s = 2. 

�9 This condition is required for the group parameters to be essential ; see [14] for further detail. 
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Having defined the class of r-parameter groups to be considered in this paper : (2.5)-(2.7), 
and having introduced some important aspects of the dimensional matrices associated with 
such groups, attention now turns to certain features of a generalized dimensional analysis 
approach developed in [141. One of the principal results of [141 is summarized in Theorem 1, 
which is formulated here in terms of a r-parameter group (2.5)-(2.7). 

Theorem 1: I f  the function Ij is invariant inform under an r-parameter group (2.5)-(2.7)--Le., 
if Z j=I j  (X1 . . . . .  X,,; Y1 . . . .  , Yp) transforms to Z i = l  j (X1, ..., Xm; I11 . . . . .  Yv)' then Z j=I j  (...) 
is equivalent to a relationship in fewer variables, 

H j ( Z j ,  X 1 . . . . .  Xm; Y1 . . . .  , Yp) = Fj(7:I(X1, "", Xm; Y1, "", rp) . . . . .  7:6(...)) (2.8) 

wherein 6 = [m + p -  r] > 0% and { IIj, rq . . . .  ,7:a} are independent absolute invariants of(2.5)-(2.7). 

In the present discussion Theorem 1 plays the role of the so-called Pi Theorem of conventional 
dimensional analysis. 

To apply Theorem 1 requires expressions for the absolute invariants of(2.5)-(2.7). While [14] 
provides expressions for the invariants, it is illuminating to consider the manner in which they 
may be established. By definition, 7: (X1, ..., X,, ; 111 ..... gp) is an absolute invariant provided 
that under the transformations (2.6)-(2.7), 

7:(-Y1 . . . .  , X , , ;  I11 . . . .  , Yp) = 7: (Xa . . . . .  X , , ;  Ya , . . . ,  Yp). ( 2 . 9 )  

Upon differentiation of (2.9) with respect to each of the parameters in turn, 

& aX'k & aye 6 + /_., - 0 (~= 1, r) (2.10) 
k=l ~ ~3A~ e=l aY~ t3A~ " . . . .  

And with (2.6)-(2.7) it follows that, 

aXk V bk ] ~re [Ce  1 
aA~ - L A,J Xk ' aA~ - LA~I ~ . (2.11) 

Combining (2.10) and (2.11), a system of first order, linear partial differential equations evolves, 

~ bk~Xk ~7: ~ ~7: k=l ~kk + e=l Ce~ ~e = 0 (c~= 1, ..., r ) .  (2.12) 

According to the theory of first order, linear partial differential equations [151 , (2.12) has 
[m+ p -  r I independent solutions. It will now be shown that each of the independent solutions 
may be determined in the form, 

7: = [ X l l r * . . . [ X ~ ] r ~  [ y , ] ' , . . . [ Y p ] ' e ~  = [x,]r ' . . .[X, ,]r". . .[Y,]". . .[Yp] ~P (2.13) 

Indeed, upon substitution of (2.13) into (2.12) and simplification, a linear system of ordinary 
equations is derived, 

Fk[b!2 ] - [ - S ? e  p ICe2[ .  ~--- (2.14) 
k=l e=l 

b ~ kCer_[ 

Therefore, to determine the [m + p - r ]  independent absolute invariants n needed to apply 
Theorem 1 requires only that [m + p - r ]  independent solutions be established to (2.14); (also 
see [13; Chapter 3)]. 

A like procedure can be invoked to show that the absolute invariants Hj of Theorem 1 may 
be established in the form, 

= [Yd " . . .  

= [Zj] [X,] A'' ... [Xm1A'm[Y11 z'' ... [rp]a'P (2.15) 

* The special case 6 = 0 is discussed in [147 and will not be given further consideration here. 
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wherein, 

~bkl 1 [eeq FaJll 

1 ICe21 / a ~ /  (2.16) 

LCer J kaj, J 
With the foregoing preliminaries in hand, the principal results of this paper are presented in 

the following article. 

3. Principal Results 

The statement of Theorem 1 does not suggest a preferred form for the required absolute in- 
variants. However, experience reveals that for practical applications of the theorem it is 
frequently good practice to establish the required set of absolute invariants in one of the two 
forms to be given in Theorem 2 and Theorem 3. 

Theorem 2 treats the case where the rank r of the matrix BC associated with an r-parameter 
group (2.5)-(2.7) equals the rank s of the matrix C ; the case r > s is then considered in Theorem 3. 

Theorem 2 : 
required by Theorem 1 may be obtained in the form*, 

IIj = Zj[YI~J'... [Y,]X~" ( j= 1 . . . .  , n) 

~k = X k [ Y , ]  ' ~ ' ' ' '  [Y,]~" (k = i , . . . ,  m) 

~cp = yp [ y , ] oo , . . . [ y , ] ~p .  (p = I t + l ] ,  ..., p). 

If, and only if r=s, the set of [n+m+p-r]  independent absolute invariants 

(3.1) 

(3.2) 
(3.3) 

Eq. (3.1) is readily established via (2.15)-(2.16) upon utilizing the assumed condition that 
when s = r, the first r rows of the matrix C are linearly independent. Thus, (2.16) yields the follow- 
ing system of equations for the exponents 2j~ of (3.1), 

rcq ra q 
,3.4, 

Gt=I 

c r LajrI 

When r = s, (3.3) follows from (2.13)-(2.14); indeed, (2.14) yields the following system of equa- 
tions for the exponents 6p~ of (3.3), 

l Vo,l 
~1 6p~ C,2[i  _1%.21. (p= [ r+  I ] ,  ...,p) (3.5) 

: k % J  kCo, J 
In like manner, (2.14) yields the following system of equations for the exponents ?k~ of (3.2), 

Fcq [b q 

cr b r 
The converse of Theorem 2 readily follows. 

For ease in following discussions, it is helpful to introduce, 

Definition 2 : The absolute invariants {H ~r r of Theorem 2 are termed normalized variables. 
See [12] for a like usage. 
* It is assumed that p>s. For the special case p=s, no absolute invariants are determined solely from the physical 
variables. 
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It is illuminating to view Theorem I within the context of the results provided by Theorem 2. 
Thus, when r=s ,  (2.8) of Theorem 1 may be rewritten as, 

Zj[Y1]  ~j' ... [Y~]~J" = F j (~  . . . .  , ~,,; ~r+l . . . .  , ~p). (3.7) 

Clearly, the number of absolute invariants ~ involving only physical variables is [ p -  r] ; so 
in this sense it might be said that the number of physical variables has been reduced from p 
in the original relationship Ij to [ p - r ]  in Fj. On the other hand, the number of normalized 
independent variables ~ in Fj is precisely the same as the number of independent variables in 
Ij; namely, m. As a conclusion, therefore, when Theorem I is applied via a group (2.5)-(2.7) for 
which r = s, the outcome of the application can only lead to a reduction in the number of 
physical variables, and cannot lead to a reduction in the number of independent variables. 

Further conclusions may often be elicited upon inspection of the dimensional matrix asso- 
ciated with (2.5)-(2.7). To develop this point further, rewrite (3.7) as, 

Z1 = [I71] -xj' ... [Yr]-ZJrVj(fh . . . .  , f tp).  (3.8) 

Thus, Zj varies directly as, say, [gr]-  ~j" whenever the variables ~k, #o are independent of Yr. To 
determine when such behavior may be anticipated, consider (3.2) and (3.3). From (3.2) it follows 
that #k is independent of Yr whenever 7k, = 0; likewise, (3.3) reveals that ~p is independent of Yr 
whenever 6pr=0. Thus, with (3.5) and (3.6) it may be concluded that Zj varies directly as 
[Yr] -zjr whenever the first I t -  1] rows of C span the matrix derived from B C  upon deleting 
row r of C. Clearly, this reasoning can be extended. 

The foregoing discussion has focused upon groups (2.5)-(2.7) with r=s ,  the equally im- 
portant case r > s will now be treated. 

Theorem 3 : 
by Theorem 1 may be obtained in the form,  

Hj = Zj [X~]a~... [X,,]aJ" [ I+1] xj, ... [ Ys] ~+: 

= x , [ x j r - . . .  I x : ] t o :  [Ysy o: 

= L [ Y , ]  . . .  

wherein e - [m + s -  r + 1] __< m. 

If, and only i f  r > s, the set o f i n  + m + p - r] independent absolute invariants required 

(j = 1,..., n) (3.9) 

(a=  1, ..., I r a + s - r ] )  (3.10) 

(p= [ s+  1] . . . . .  p) (3.11) 

Eq. (3.9) is readily established via (2.15)-(2.16) upon utilizing the assumed condition that 
when r > s, the last [ r -  s] rows of the matrix B plus the first s rows of the matrix C are linearly 
independent. Thus, (2.16) yields the following system of equations for the exponents of (3.9), 

rb=,l [c q F+q 
a = e  c o = l  " 

b LCo~,. La./rJ 

( j= 1 . . . . .  n). (3.12) 

When r>s ,  (3.11) follows from (2.13)-(2.14); indeed, (2.14) yields the following system of 
equations for the exponents of (3.11), 

FCo,l  F oll �9 

o 9 = 1  

LCo~rj LC,,,J 

(p = I s+  13 . . . . .  p). (3.13) 

In like manner, (2.14) yields the following system of equations for the exponents of (3.10), 
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~=~ b:~ ,o=~ ~_c,or~ b 

..., I r a + s - r ] ) .  (3.14) 

The converse of Theorem 3 readily follows. 
The following discussions are eased by the introduction of, 

Definition 3: r is termed a similarity variable whenever at least one of the exponents F~ 
(c~ = ~ . . . .  , m) is non-zero; and is termed a normalized variable whenever each of the exponents F~, 
is zero. 

Like considerations also follow for the invariants/-/j of Theorem 3. 
It is illuminating to view Theorem 1 within the context of the results provided by Theorem 3. 

Thus, when r > s, (2.8) of Theorem 1 may be rewritten as, 

{Zj[X~]aJ~... [Xm]aJm [gl]ZJ' ... [YJZJ'} = Fj(~I, ..., #m+~-,, ~+~,  "", #p)" (3.15) 

It is clear that the number of independent variables # in Fj is fewer than the number of in- 
dependent variables in the original relationship Ij. As a conclusion, therefore, when Theorem 1 
is applied via a group (2.5)-(2.7) for which r > s, the outcome of the application is a reduction in 
the number of independent variables. 

As for the case r = s, further conclusions may often be elicited for the case r > s upon inspection 
of the dimensional matrix associated with (2.5)-(2.7). To develop this point further, rewrite 
(3.15) as, 

= { [Xm]-a  EYd ... 1 . . . .  , ~p). (3.16) 

Thus, Z~ varies directly as, say, [X,] -aJ~ whenever the variables ~ are independent of X~. 
To determine when such behavior may be anticipated, consider (3.10). From (3.10) it follows 
that ~ is independent of X~ whenever F~=0 .  Thus, with (3.14) it may be concluded that Zj 
varies directly as [Xs -a~ whenever the last [ r -  s -  11 rows of the matrix B plus the first s rows 
of C span the matrix derived from BC upon deleting the row corresponding to X~. Clearly, this 
reasoning can be extended. 

The results of the present article are illustrated in w 5-w by application to a number of typical 
engineering problems. 

4. On the Sedov Self-Similarity Criterion 

In formulating a conventional dimensional approach to one-dimensional, unsteady gas flows, 
Sedov [16, pp. 146-148] adopts dimensional formulae corresponding to the scale change 
equations, 

Zzj = m ~jl/2 j2 z ~j3 Zj (j = 1 . . . .  , n) 

MO L+ l zO x 

MOLOz+lt = (4.1) 

Y1 = M~ E12zc13 Y1 

Ye =MCe~ISe2zc~aye ( e = 2  . . . . .  p) 

where {c12, c13, c21 } are assumed to be non-zero ; x denotes a position coordinate, t symbolizes 
time, the Y's represent the associated physical variables (cf. (2.3)-(2.4)). 

Equations (4.1) have the same form as the class of transformation groups under considera- 
tion : (2.5)-(2.7). It is illuminating to inquire into the nature of the gas flows for which Theorem 3 
is applicable. 

The ranks of the matrices C and BC are required to determine when Theorem 3 can be applied. 
From (4.1) it follows that BC has the form, 
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BC: 

-0 1 0 

0 0 1 

/ 
0 C12 C13 

C21 C22 C23 

Cpl Cp2 Cp3_ 

with the matrix C corresponding to the last p rows. In light of the requirement that c 21 r 0, the 
rank r of BC is three : r = 3 ; furthermore, because cl 2 and c 13 are also presumed to be non-zero, 
the rank s of the matrix BC is at least two : s > 2. 

Theorem 3 is applicable only when the rank r of the matrix BC is greater in value than the 
rank s of the matrix C : r > s. Thus, it is necessary that s = 2 ; that is, of the set of physical variables, 
only two may be dimensionally independent. For r =  3, s = 2 a similarity type result evolves: 
With Theorem 3, 

n j  = z j [ t ]  A~2 [ r l ]  ~ '  [r2] ~ 

~, = x[t]r,~[Y,]'~'[Y2]m 

~p = Yp[)/1]ap ' []12] '~I:'2 

wherein, 

(j = 1 . . . .  , n) 

(p = 3, ..., p)  

A,2 + + X. l C 2 q  = - a .  l 
L Cl3J LC23J aj3J 

Ft~ + 711 cl + 712~c22| = 

+LlJ k q j  LC23J 

101 r.,l v+ l +pl C12 q" - / c . /  
m c13J LC23J L cp3J 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

Thus, 712=0, 711 = -1 /c12 ,  F12=c13/c12; and ~1 is a similarity variable. 
The foregoing development may be summarized by noting that to achieve a similarity type 

result via (4.1), the set of physical parameters associated with a given flow may include only two 
members with independent dimensions. This summary exactly corresponds to the well-known 
Sedov self-similarity criterion, [16, p. 148-1 ;(see [17], [18-1, [19] for recent applications of the 
criterion). It should be noted, however, that the Sedov criterion is tied to the particular class of 
transformation groups (4.1); and is therefore limited in scope. On the other hand, Theorem 3 
can be applied with any group of th e form (2.5)-(2.7) for which r > s, including ones of the form 
(4.1). Thus, Theorem 3 constitutes a generalized formulation for similarity which includes the 
Sedov criterion, but which may be invoked in cases wherein (4.1) is not appropriate--e.g., see 
the illustration of w 7. 

5. Flow Near a Wall in Motion. 

The first illustration to be considered is the incompressible flow problem introduced in w 2, 
represented byl 

u t -  vuy, = 0 (momentum) (2.1) 

[ u - , O  as t--*O when y>O 
/ u ~ O  as y ~ o e  when t > O  (2.2) 
Lu-~U as y~O when t >0  
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Initially, the problem is analyzed from a conventional dimensional viewpoint--i.e., by applica- 
tion of the two-parameter group (2.4). Then, the generalized dimensional analysis approach 
described in [14] is invoked to establish a somewhat stronger conclusion via Theorem 3. 

The governing equations (2.1)-(2.2) are easily shown to be invariant in form under the two- 
parameter group (2.4); and this suggests that the solution u = l ( y ,  t;U, v) is also invariant in 
form under (2.4), [1], [14]. Therefore, Theorem 1 can be invoked to establish an equivalent 
relationship in fewer variables. Furthermore, the appropriate Theorem of w 3 may be utilized 
to develop the absolute invariants required by Theorem 1. 

To determine which of the theorems of w 3 is appropriate for the present application, the 
ranks of the matrices C and BC associated with (2.4) must be evaluated ; thus, consider, 

ii BC: . . . .  ' 

wherein the matrix C corresponds to the last two rows. By inspection, r = s = 2 ; consequently 
Theorem 2 is appropriate for establishing the absolute invariants of (2.4). 

The following set of normalized variables can be shown to evolve via Theorem 2, 

{El = u/U, r = y / [ v / U ] ,  ~2 = t / [ v / U 2 ] }  �9 (5.1) 

Elementary chain-rule operations are sufficient to show that the governing equations (2.1)-(2.2) 
may be rewritten in terms of only the normalized variables (5.1), [14]. Consequently, it follows 
that in accord with the conclusion of Theorem 1, H = F ( ~ I ,  ~2). 

In summary, then, an application of Theorem 1 within the context of a traditional approach 
to dimensions has led to the normalized variables (5.1). The generalized approach described in 
[14] will now be coupled with Theorem 3 to deduce similarity variables. 

Instead of beginning this phase of the analysis with the transformations (2.4), the present 
analysis is initiated with transformations of the form, 

fi = A 1 u, (dependent variable) 

= A z y ,  ~ = A3t  (independent variables (5.2) 

= A 4 v ,  U = A 5 U (physical variables) 

The A's of (5.2) must necessarily be interrelated in order to meet the requirement of Theorem 
1 that (2.1)-(2.2) be invariant in form. Indeed, this requirement is met whenever the following 
relationships exist among the A's, A s = A 1 ,  A 4 = A 2 A ; ~ ;  or in other words, (2.1)-(2.2) is 
invariant in form under the three-parameter group, 

n ~ 1 7 6  v = A ~  (5.3) A + I A O A  O. aV ~--- ,c112a 2 
~ za 1 za2 za3 U 

~- a o a o n + l  -- A~-I o o = A z A a U  

see [14] for further detail.* 
To determine which of the two theorems of w is appropriate for establishing absolute 

invariants for (5.3) requires that the ranks of the associated matrices C and BC be evaluated ; 
thus, 

* The  t r ad i t i ona l  d imens iona l  t r ans fo rma t ion  g roup  (2.4), a two-pa rame te r  group,  is included in the general ized 
d imens iona l  t r ans fo rma t ion  g roup  (5.3), a th ree -pa ramete r  group.  This  may  be verified by subs t i tu t ing  A 1 = L + 1 z - 1  
A2=L, Aa = ~  in to  (5.3). 
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~ 0 1 0 

Bc./o___o_ ..... 1[ 
/ 0 -1 / 
L1 0 0 J  

wherein the matrix C corresponds to the last two rows. 
By inspection, r = 3 and s--2; consequently, Theorem 3 is appropriate for establishing ab- 

solute invariants. Indeed, 

II = u/U , ~ = y/[vt] ~ . 5.4) 

Clearly, ~ is a similarity variable. Furthermore, recalling the discussion associated with (3.16), 
the absence of the physical variable U from ~ might well have been predicted by observing that 
the last row of BC, which corresponds to U is independent of the remaining rows. 

The change of variables provided by (5.4) is well known [111, and leads to a solution for the 
system (2.1)-(2.2) in terms of the error function, 

/7 = 1 - erf(~/2) (5.5) 

In conclusion, it is noted that the result (5.5) is achieved by application of Theorem 3 via the 
generalized dimensional analysis approach, but is not established by means of a traditional 
dimensional approach. 

6. The Blasius Problem. 

The next illustration to be considered concerns the so-called Blasius problem of two-dimen- 
sional, incompressible flow past a flat plate. The problem is governed by the following equations, 

uu~+vuy= vu ,  (momentum) 

u~ + vy = 0 (continuity) (6.1) 

subject to, 

u = v = 0  at y = 0  (6.2) 
u--*U as y ~ o e  and as x--+0 

where the velocity component normal to the plate is denoted by v(x, y); u(x, y) symbolizes the 
velocity component parallel to the plate, and U is its constant-valued limit as the normal 
distance y approach infinity; v represents the constant kinematic viscosity of the fluid; and 
x denotes distance along the plate as measured from the leading edge, [16]. 

The solution to (6.1)-(6.2) is well known, being determined via the change of variables (6.3), 

u/U=F1 [y(U/vx)+], v(x/vU) ~ = F2 [y(U/vx) -~] (6.3) 

for instance, see Sedov [16]. In his analysis of the Blasius problem Sedov shows that the change 
of variables (6.3) cannot be deduced via an application of a conventional dimensional approach 
without introducing an auxiliary discussion. The problem of establishing the variables of (6.3) 
will now be investigated by means of the theorems of w 

A conventional application of dimensional analysis to the Blasius problem would utilize 
dimensional formulae corresponding to the scale change equations (6.4), 

fi = U J z-  1 u, ~ = L + 1 z-  1 v (dependent variables) 

= U 1 co x, y = L + t co y (independent variables) (6.4) 

= U 2 z- 1 v, U = L + 1 z- 1 U (physical variables) 

Equations (6.4) constitute a two-parameter group, with the scale factors L and z playing the 
role of the group parameters. Moreover, as may be shown, (6.1)-~6:2) is invariant in form under 
(6.4). 
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To determine which of the two theorems of ~ 3 is appropriate for establishing absolute in- 
variants for (6.4) requires that the ranks of the associated matrices C and BC be evaluated ; thus, 

1 0 

1 0 
BC: . . . . . . . . .  

2 - 1  

1 - 1  

where C corresponds to the last two rows. For BC, r = s = 2. It follows that Theorem 2, rather 
than Theorem 3 is appropriate; therefore, the similarity result (6.3) cannot evolve via (6.4). 
So, indeed, a conventional dimensional approach is not effective in establishing (6.3). 

Next, the generalized dimensional analysis procedure is invoked. Upon  initiating the analysis 
with a general transformation of the form ~ = A lU, ~ = A 2 v, 2 = A 3 x, etc., it is readily shown the 
A's must be interrelated in order for (6.1)-(6.2) to be invariant in form. Thus, as may be shown, 
(6.1)-(6.2) is invariant in form under the three-parameter group (6.5), 

fi = Ai~ laoao  . . . .  ~ 2 ~ 3 u ,  f ~ = A ~ A I A 3  ~v 

X = ~ 1 ~ 2 ~ . 3  x ,  y = A  1 A2A3y (6.5) 
- - 0 - - + 1 - - 0  ~ : A ~ - I  o o = A1 ~12 A3v, A 2 A 3 U  

The matrix BC associated with (6.5) has the form, 

f 0 0 1 1 t 1 
- - ~  ~ 2 

BC: . . . . . . . . . . . . . .  
0 1 0  

1 _ 1 0 0  

By inspection, r =  3 and s = 2. Therefore, Theorem 3 is applicable; and the variables of (6.3) 
can be shown to evolve naturally upon application of Theorem 3. 

In summary, the Blasius problem illustrates once again the superiority of generalized di- 
mensional analysis over the traditional dimensional approach, by achieving similarity variables 
rather than normalized variables. Too, the Blasius problem illustrates the utility of the theorems 
of ~3 for determining the general outcome of an analysis with a particular group, without the 
need for directly establishing the absolute invariants of the g rou t s - and  this point is given 
further emphasis in the following discussion. 

7. Extrusion with Sublimation. 

The steady, laminar incompressible boundary layer on a moving continuous fiat surface 
with sublimation (or condensation) has been studied in [20], wherein the objective is to deter- 
mine the velocity, temperature and concentration profiles within the boundary layer. The 
governing differential equations are given by, 

ux + vy = 0 (continuity) 

uu~+vu~- 'vuyy  = 0 (momentum) (7.t) 
u T~ + v Ty-- ~ Ty, = 0 (energy) 

u C~ + v C r -  D Cry = 0 (diffusion) 

where u denotes the velocity component parallel to the plate, and v signifies the velocity com- 
ponent normal to the plate. Position along the plate is designated by x, while position normal 
to the plate is designated by y. The constant transport coefficients for momentum, energy and 
diffusion of species are symbolized, respectively by v, e, and D. 
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The objective of the present discussion is to establish via Theorem 3 the number  of physical 
variables with independent dimensions that may be introduced (via the boundary  conditions), 
and still achieve a similarity type result. 

The generalized dimensional analysis approach of [14] may be invoked to show that (7.1) 
is invariant in form under the transformations of (7.2), 

- -  1 0 0 0 0 0 1 0 0 0 
T = A~A2A3A4A5 T, C = A 1 A z A 3 A 4 A 5  C (dependent variables) 

0 0 1 0 0 0 0 1 -- 
= A I A 2 A 3 A  4 = A 1 A 2 A a A 4 A s u  , ~ 1A~v 

(7.2) 
{ ~ = AaA2A3AgAsx,O 0 0 1 0 y =  A1AzA3AgAsyO 0 0 0 1 (independent variables) 

~ 0 0 1 - 1  2 0 0 1 - 1 A 2  ~ ---- = A1A2AaA4  5 , . . A1AaA3A4  A5v' ~ (physlcalvarlables) 
- -  0 0 1 - 1  2 
D = A t A 2 A 3 A  4 A5D 

The dimensional matrix associated with (7.2) is, 

T :  1 0 0  0 0-  

C: 0 1 0 0 0 

u: 0 0 1 0 0 

v: 0 0 1 - 1  1 
. . . . . . . . . . . . . . . . . . . . . . .  

x: 0 0 0 1 0 

y: 0 0 0 0 1 
. . . . . . . . . . . . . . . . . . . . . . .  

v: 0 0 1 - 1  2 

~i 0 0 1 - 1  2 

D: 0 0 1 - 1  2 

Since the rank r is five, Theorem 3 indicates that for a similarity type result there can be at most 

four physical variables with independent dimensions ; or in other words, in addition to v, a, D 
there can be at most three physical variables with independent dimensions.* 

In light of the foregoing conclusion it is pertinent to point out that [20] presents a similarity 
type solution for (7.1) with boundary conditions involving precisely three additional physical 
variables with independent dimensions. These boundary conditions are, 

a t y = 0 "  u = U ,  T=Tw,  C=Cw,  v = V o / x / x  (7.3) 

as y ~ :  u-*O, T ~ T ~ ,  C ~ C ~  

wherein U, T~, T~, Cw, C~,  Vo are physical variables. 
The dimensional matrix associated with the physical variable s of (7.1) and (7.3) is, 

T w . 1 0 0 0 0 -  

T~: 1 0 0 0 0 

C~: 0 1 0 0 0 

Coo: 0 1 0 0 0 

U: 0 0 1 0 0 

Vo- 0 0 1 1 

v: 0 0 1 - 1  2 

~: 0 0 1 - 1  2 

D: 0 0 1 - 1  2~ 
* It may be shown that the traditional dimensions are included in (7.2). Thus, upon letting A 1 = 0, A 2 = ML-a, A3 = 
Lz-1, A4 = L, and A 5 = L and substituting these into (7.2), the traditional dimensional transformations are obtained. 
The dimensional matrix, BC, associated with the independent and physical variables for traditional dimensions has 
rank r=4. The rank of the C matrix is s=4. 
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The rank s of this matrix is four. Therefore, with Theorem 3, the absolute invariants are ob- 
tained as similarity variables :* 

H1 = T+IT,~ 1, H2=C+IC~ 1, H3=u+tU -1, H4=vx~Vo -1 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

~1 = x +  l y -  20~+ 2 Vd - 2 (7.4) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

5 1 =  Tw+IT21,  2=C+wlC; = = - 1 ,  V o + 2 V - 1 V  , 

In conclusion, it is noted that this problem clearly reveals the effectiveness of Theorem 3 as a 
generalization of Sedov's similarity criterion. 

8. Closure. 

In this paper a careful distinction among the variables appearing in a given set of governing 
equations is shown to be instrumental for utilizing most effectively the generalized dimensional 
analysis formulation presented in [14]. In particular, the delineation of three distinct categories 
for the variables as dependent, independent, or physical naturally leads to a straightforward test 
for determining if a similarity type result can be achieved for a given set of governing equations, 
via a given dimensional group with the form (2.5)-(2.7). Indeed, a review of the principal results 
reported (Theorems 2, 3) reveals that to apply the test, it is only necessary to determine the 
ranks of two matrices associated with the group being considered. Additionally, it has been 
shown that Theorem 3 constitutes a generalization of Sedov's self-similarity criterion. 
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